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The use of panel data models with two-way fixed effects is widespread.
Incidental-parameter bias, however, invalidates inference based on the
(profile) likelihood. We consider modifications to the likelihood that
yield asymptotically-unbiased estimators as well as test statistics that
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inference.
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1. Introduction. Two-way fixed-effect models arise in many areas of

applied economics. Many models for panel data, in addition to the usual

individual-specific effects, routinely include time dummies to account for

aggregate time effects. Statistical models for data on dyadic interactions

between agents, too, typically feature different fixed effects for each type of

agent. Gravity models for trade data feature importer and exporter effects

at least since the work of Harrigan [1996]. Anderson and van Wincoop [2003]

provide a theoretical motivation for doing so.

It is known since the work of Neyman and Scott [1948] that models with

fixed effects pose a serious theoretical challenge for statistical inference. The

problem has received substantial attention for panel models with one-way

fixed effects. Arellano and Honoré [2001], Arellano and Hahn [2007], and

Arellano and Bonhomme [2011] provide overviews with different emphases.

One main conclusion is that bias correction is needed to justify inference
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based on the likelihood. The sampling noise in the estimated fixed effects

implies that the profile score equation for the common parameters is biased.

A complete correction for this bias is not feasible except in some special

cases but its order of magnitude can be reduced quite generally. Under

so-called rectangular-array asymptotics (Li, Lindsay and Waterman 2003;

Sartori 2003), where both dimensions of the panel grow at the same rate,

such a reduction is sufficient to yield an asymptotically-unbiased estimator.

This type of asymptotic approximation is suitable for data sets where none

of the dimensions is negligibly small compared to the other, which are in

increased supply.

The problem is more complicated in a two-way setting as, now, each

dimension of the data has its set of fixed effects. If neither of the dimensions

is negligible relative to the other, both sets of fixed effects will contribute

bias to the profile score that has to be accounted for. The development of

estimators of two-way models that enjoy sound theoretical properties has

taken off only fairly recently. Fernández-Val and Weidner [2016] and Chen,

Fernández-Val and Weidner [2014] have characterized the leading bias terms

in the maximum likelihood estimator of quite general two-way models with

additive and interactive fixed effects, respectively.1 These results enable bias

correction of the maximum-likelihood estimator by subtracting from it a

plug-in estimator of the bias. Such an approach is the natural extension of

the ones taken in Hahn and Newey [2004] and Dhaene and Jochmans [2015]

for one-way models.

In this paper we present likelihood corrections for two-way models that

lead to asymptotically-valid inference under rectangular-array asymptotics.

Inference based on modified likelihoods has a long history in statistics; see,

e.g., Barndorff-Nielsen [1983], Cox and Reid [1987], DiCiccio et al. [1996],

and Severini [1998a;b]. In the econometric literature on one-way panels, their

use has been advocated by Arellano and Hahn [2016; 2007]. The resulting

point estimator enjoys the same theoretical properties as the bias-corrected

maximum-likelihood estimator. Nonetheless, modifying the likelihood has

several implications that may lead researchers to prefer it over correcting

1Charbonneau [2017] and Jochmans [2017a;b] have invoked sufficiency arguments for
binary-choice and multiplicative-error models. Such an approach is attractive as it yields
estimating equations that are free of fixed effects but its applicability is inherently limited
in scope.
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the bias in the maximum-likelihood estimator.

First, the correction term has a simple generic form, depending only on the

score and Hessian matrix for the nuisance parameters. Therefore, we do not

need to know the precise functional form of the bias, which is model specific,

and implementation does not depend on whether the nuisance parameters

are scalars or vectors. Second, the likelihood can be modified in such a way

that inference remains invariant to interest-preserving reparametrizations.

Third, correcting the likelihood function not only leads to point estimators

with reduced bias, but also directly improves the likelihood-ratio and score

statistics. Finally, our modified likelihoods can be combined with Markov

chain Monte Carlo techniques to obtain point estimators and confidence

regions with attractive frequentist properties by simulation. This avoids

numerical optimization and estimation of the asymptotic variance, where

calculations of higher-order derivatives of the profile likelihood are required.

The rest of the paper is organized as follows. Section 2 introduces the

problem at hand and derives the leading bias term in the profile likelihood.

Section 3 sets up the likelihood corrections. Section 4 contains examples and

numerical results.

2. Models with two-way fixed effects. Consider an n ×m sample

of independent observations {zij : i = 1, . . . , n, j = 1, . . . ,m} and suppose

that the density of zij (relative to some dominating measure) is specified to

be

f(zij ; θ, αi, γj).

The function f is known up to the finite-dimensional parameter θ and the

fixed effects αi and γj , all of which may be vectors. The goal is to perform

inference on θ. The vectors α = (α′1, . . . , α
′
n)′ and γ = (γ′1, . . . , γ

′
m)′ are

treated as nuisance parameters. This setup covers the conditional-likelihood

setting where the marginal likelihood of the covariates is unrestricted (an

example is given below).

2.1. Profile log-likelihood. Let λ = (α′, γ′)′. The log-likelihood function

for all parameters is

`(θ, λ) =

n∑
i=1

m∑
j=1

log f(zij ; θ, αi, γj).
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The maximum-likelihood estimator of θ is given by θ̂ = arg maxθ ˆ̀(θ), where
ˆ̀(θ) is the profile log-likelihood,

ˆ̀(θ) = `(θ, λ̂(θ)),

and λ̂(θ) is the maximum-likelihood estimator of the nuisance parameters

for a given θ, i.e.,

λ̂(θ) = arg max
λ

`(θ, λ).

In many cases this optimization needs to be performed under a normalization

constraint on the fixed effects. For example, if the density depends on (αi, γj)

only through αi + γj , then we cannot hope to learn the mean of each effect,

so we would impose, for example,
∑

i αi =
∑

j γj . We leave the need for such

a normalization implicit for most of the paper.

It is well-known that inference based on the profile likelihood performs

poorly when the dimension of the nuisance parameters is large relative to

the sample size. In general, profiling out the nuisance parameters α and γ

introduces bias in the profile score function, which are of order O(n) and

O(m), respectively. The source of each of these bias terms is the estimation

error in α̂(θ) and γ̂(θ), respectively. Under the asymptotics where m remains

fixed while n→∞, the dimension of α grows with the sample size, and this

leads to the incidental-parameter problem as studied in the seminal work

of Neyman and Scott [1948]. Under asymptotics where both n,m → ∞,

the dimensions of both α and γ grow with the sample size. In this case the

behavior of
√
nm(θ̂ − θ) depends on the relative magnitude of n and m.

Moreover, its bias is of order O(n/m) + O(m/n), which diverges unless n

and m grow at the same rate. This motivates the focus on rectangular-array

asymptotics, i.e., an asymptotic embedding in which n/m → ρ2 for some

ρ ∈ (0,∞).

Under rectangular-array asymptotics, the maximum-likelihood estimator

is asymptotically biased. This implies that confidence intervals based on the

asymptotic distribution are incorrectly centered. For the same reason, the

likelihood-ratio and score tests both suffer from size distortion even in large

samples. Below we consider modifications to the profile likelihood that yield

size-correct inference.
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2.2. Information bias. The profile log-likelihood can be seen as a plug-in

version of the (infeasible) target log-likelihood

`(θ) = `(θ, λ(θ)),

where

λ(θ) = arg max
λ

E
(
`(θ, λ)

)
.

Replacing λ(θ) = (α(θ)′, γ(θ)′)′ with the estimator λ̂(θ) = (α̂(θ)′, γ̂(θ)′)′

introduces bias. To see this, let

V (θ) =
∂`(θ, λ)

∂λ

∣∣∣∣
λ=λ(θ)

, Σ(θ) = − E
(
∂2`(θ, λ)

∂λ∂λ′

)∣∣∣∣
λ=λ(θ)

,

and define the covariance matrix

Ω(θ) = E
(
V (θ)V (θ)′

)
.

Under certain regularity conditions (see, e.g., Fernández-Val and Weidner

2016 and Chen, Fernández-Val and Weidner 2014) we have

λ̂(θ)− λ(θ) = Σ(θ)−1V (θ) +Op(n
−1 ∨m−1).

Together with an expansion of ˆ̀(θ) = `(θ, λ̂(θ)) around λ̂(θ) = λ(θ), the

difference between the profile log-likelihood and its target then takes the

form

ˆ̀(θ)− `(θ) =
1

2
V (θ)′Σ(θ)−1V (θ) +Op(mn

−1/2 ∨ nm−1/2).

Therefore,

β(θ) = E
(
ˆ̀(θ)− `(θ)

)
=

1

2
trace

(
Σ(θ)−1Ω(θ)

)
+O(mn−1/2 ∨ nm−1/2).

Here, the leading bias term arises from the estimation noise in the fixed

effects. Typically,

β(θ) = O(n) +O(m),

where the first term arises from the estimation noise in α̂(θ) and the second

term stems from imprecision in γ̂(θ). Under regularity conditions the above

bias in the profile log-likelihood function implies that the bias in the score

equation takes the form β′(θ), which leads to the asymptotic bias in the

maximum-likelihood estimator.
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3. Modified log-likelihood. A plug-in estimator of the bias term β(θ)

based on the maximum likelihood estimator is

β̌(θ) =
1

2
trace

(
Σ̂(θ)−1Ω̂(θ)

)
where the matrices Σ̂(θ) and Ω̂(θ) are sample counterparts to Σ(θ) and

Ω(θ), respectively, obtained by using the plug-in estimator λ̂(θ). Subtracting

this estimator of the bias term from the profile log-likelihood yields the

modified profile log-likelihood function

ˇ̀(θ) = ˆ̀(θ)− β̌(θ),

which yields a superior approximation to the target likelihood `(θ) as n,m→
∞ with n/m→ ρ2.

3.1. Asymptotically-unbiased estimation. Now we consider the maximum

modified likelihood estimator

θ̌ = arg max
θ

ˇ̀(θ).

Let

Iθ = −E
(
∂2`(θ)

∂θ∂θ′

)
,

be the Fisher information. Under standard regularity conditions we obtain

(3.1) θ̌ − θ a∼ N(0, I−1
θ ),

as n,m → ∞ so that n/m → ρ2. This conclusion is to be contrasted with

the corresponding result for the maximum likelihood estimator, which reads

θ̂ − θ a∼ N(I−1
θ β′(θ), I−1

θ ),

as n,m→∞ so that n/m→ ρ2.

The distributional result in (3.1) permits valid inference based on the

Wald principle. However, given the lack of invariance of the Wald statistic

to formulation of the null hypothesis, we may equally consider the likelihood-

ratio statistic. For testing H0 : θ = θ0 against the alternative H1 : θ 6= θ0,

for example, the modified likelihood-ratio statistic is

−2
(
ˇ̀(θ0)− ˇ̀(θ̌)

)
.



7

By virtue of the correction term β̌(θ), under the null, this statistic will be

well-approximated by a χ2 random variable. Likewise, the correction term

implies
∂ ˇ̀(θ)

∂θ
=
∂ ˆ̀(θ)

∂θ
− β′(θ),

which is an improved approximation to the infeasible score ∂`(θ)/∂θ. Hence,

letting θ̇ denote the constrained maximizer of ˇ̀(θ) under the null, and writing

İθ for an estimator of the information under the null, the modified score

statistic (
∂ ˇ̀(θ)

∂θ

∣∣∣∣
θ=θ̇

)′
İ−1
θ

(
∂ ˇ̀(θ)

∂θ

∣∣∣∣
θ=θ̇

)
leads to size-correct inference in large samples.

3.2. Local correction term. The construction of β̌(θ) (and, in fact, the

derivation of β(θ) itself) does not use the likelihood structure. As such,

it is equally applicable in quasi-likelihood and more general M-estimation

settings. In the likelihood framework, under correct specification, we can use

the fact that the information equality holds at the true parameter value to

construct the alternative correction term

β̃(θ) = −1

2
log det Σ̂(θ) +

1

2
log det Ω̂(θ),

and corresponding modified log-likelihood

˜̀(θ) = ˆ̀(θ)− β̃(θ),

which is invariant to interesting respecting reparametrizations of the model.

The derivation of β̃(θ) from β̌(θ) follows as in Pace and Salvan [2006]

(p. 3561) and Arellano and Hahn [2016] (p. 258). The function β̃(θ) can

be understood as an extension of DiCiccio et al. [1996] to two-way models.

Following Pace and Salvan [2006], it can also be seen as a generalization

of the approximate conditional log-likelihood developed by Cox and Reid

[1987]—which would be ˆ̀(θ) + 1
2 log det Σ̂(θ) in our context —to situations

where θ and λ need not be information orthogonal.

3.3. Estimation and inference via MCMC. Numerical optimization of
ˇ̀(θ) (and, likewise, of ˜̀(θ)) and estimation of the information Iθ may prove
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to be quite cumbersome in complicated models. Fortunately, we may resort

to the use of conventional Markov chain Monte Carlo methods and draw

from the ‘posterior’

p̌(θ) =
e

ˇ̀(θ)∫
eˇ̀(θ)dθ

∝ eˇ̀(θ).

By the argument of Chernozhukov and Hong [2003], in large samples, draws

{θ∗} from the above posterior will behave like

θ∗
a∼ N(θ, I−1

θ ), θ = θ̌ + op((nm)−1/2).

Therefore, the posterior mean and median are consistent and bias-reduced

estimator of θ. Furthermore, under correct specification, the information

equality implies that the variance of the posterior draws is a valid point

estimator for the information. Alternatively, valid (frequentist) confidence

sets can be constructed directly from the posterior. Therefore, if desired,

both numerical optimization of the modified likelihood and direct estimation

of the information can be avoided.

4. Examples. We now set up the modified log-likelihood function for

some specific problems and provide simulation evidence.

4.1. Linear model. Our first example is a simple extension of the classic

Neyman and Scott [1948] problem and is particularly tractable. Outcomes

are generated as

zij ∼ N(αi + γj , θ).

The likelihood is

`(θ, λ) = −nm
2

log θ −
∑n

i=1

∑m
j=1(zij − αi − γj)2

2θ
.

The model is overparametrized because adding a constant to all αi and

subtracting the same constant from all γj leaves the likelihood unchanged.

We thus normalize the fixed effects by setting α1 = 0 (note that the choice

of normalization is irrelevant). So, the dimension of the nuisance parameters

is n+m− 1.

A calculation shows that

θ̂ =
1

nm

n∑
i=1

m∑
j=1

((zij − z)− (zi − z)− (zj − z))2



9

for zi = m−1
∑m

j=1 zij , zj = n−1
∑n

i=1 zij , and z = (nm)−1
∑n

i=1

∑m
j=1 zij .

In large samples,

(4.1) θ̂ − θ a∼ N
(
− θ
n
− θ

m
+

θ

nm
,

2θ2

nm

)
.

Thus, here, the maximum likelihood estimator underestimates the variance,

on average.

Note that the log-likelihood is symmetric in the nuisance parameters.

Moreover,

∂ log f(zij ; θ, αi, γj)

∂αi
=
∂ log f(zij ; θ, αi, γj)

∂γj
=
zij − αi − γj

θ
.

The plug-in estimator of this score contribution equals ε̂ij/θ where we define

ε̂ij = (zij − z)− (zi − z)− (zj − z),

which does not depend on θ. Thus, if we partition the (n+m−1)×(n+m−1)

covariance matrix of the score vector as

Ω̂(θ) =
1

θ2

(
Ω̂αα Ω̂αγ
Ω̂γα Ω̂γγ

)
,

we have

(Ω̂αα)i,i′ =

{ ∑
j ε̂

2
(i+1)j if i = i′

0 if i 6= i′
, (Ω̂γγ)j,j′ =

{ ∑
i ε̂

2
ij if j = j′

0 if j 6= j′
,

and

(Ω̂αγ)i,j = (Ω̂αγ)j,i = ε̂2
(i+1)j ,

where i ranges over 1, . . . , n− 1 and j over 1, . . . ,m. Further,

∂2 log f(zij ; θ, αi, γj)

∂α2
i

=
∂2 log f(zij ; θ, αi, γj)

∂γ2
j

=
∂2 log f(zij ; θ, αi, γj)

∂αi∂γj
= −1

θ
.

It follows that the information matrix for the nuisance parameters does not

depend on λ. Its plug-in estimator is

Σ̂(θ) =
1

θ

(
mIn−1 ιn−1 ι

′
m

ιm ι
′
n−1 n Im

)
,
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where In is the n×n identity matrix and ιn denotes an n-vector of ones. By

standard formulae for partitioned matrix inversion, it holds

Σ̂(θ)−1 = θ

(
m−1In−1 0

0 n−1Im

)
+
θ

m

(
ιn−1ι

′
n−1 −ιn−1ι

′
m

−ιmι′n−1
n−1
n ιmι

′
m

)
.

A small calculation then yields

β̌(θ) =
1

2
trace(Σ̂(θ)−1Ω̂(θ)) =

1

2θ

∑n
i=1

∑m
j=1 ε̂

2
ij

m
+

1

2θ

∑n
i=1

∑m
j=1 ε̂

2
ij

n
,

which is of order O(n) + O(m). The modified log-likelihood has the simple

form

ˇ̀(θ) = −nm
2

log θ−nm+ n+m

nm

∑n
i=1

∑m
j=1((zij − z)−(zi − z)−(zj − z))2

2θ
.

The intuition of the modification in this example follows from the usual

degrees-of-freedom argument. Moreover,

θ̌ =
nm+ n+m

nm
θ̂ = θ̂ +

θ̂

n
+
θ̂

m
,

which, together with (4.1), shows that the modified log-likelihood removes

the leading bias from θ̂. In this example, the estimator obtained coincides

with the bias-corrected maximum likelihood estimator.

Alternatively, a calculation shows that the local correction term that uses

the likelihood setting, up to a constant, equals

β̃(θ) = −n+m− 1

2
log θ,

Hence, an alternative modified log-likelihood here is

˜̀(θ) = −(n− 1)(m− 1)

2
log θ−

∑n
i=1

∑m
j=1((zij − z)− (zi − z)− (zj − z))2

2θ
.

Its maximizer is

θ̃ =
nm

(n− 1)(m− 1)
θ̂ =

1

(n− 1)(m− 1)

n∑
i=1

m∑
j=1

((zij−z)−(zi−z)−(zj−z))2,

which is exactly unbiased.

To further illustrate we present simulation results for the Neyman-Scott

problem in Table 1. We fix θ = 1 and present results for n = m = 10 and
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n = m = 20, which suffice to make our point for this model. All results

are obtained over 10, 000 Monte Carlo replications and are invariant to the

distributions of the αi’s and γj ’s.

Table 1 provides the bias and standard deviation (obtained over the

Monte Carlo replications) of the maximum-likelihood estimator θ̂ and of

the modified-likelihood estimators θ̌ and θ̃. The table also contains the same

statistics for the mean of the respective posteriors computed via MCMC,

θ̌∗ and θ̃∗. Additionally we report (the average of) the standard error for

each estimator, as well as the ratio of the standard error to the standard

deviation. For maximum likelihood, the standard error is estimated by the

plug-in estimator
√

2θ̂/
√
nm. The standard errors for θ̌ and θ̃ are obtained

similarly. For θ̌∗ and θ̃∗, the standard errors are obtained as the standard

deviation of the respective Markov chains. Finally, the table also reports the

empirical size of two-sided tests for the null hypothesis that θ = 1 with the-

oretical size equal to τ = .01, .05, .10. We consider the Wald statistic for all

estimators, the likelihood-ratio statistic, and (Bayesian) credible intervals

based on the posterior quantiles.

The results show that the bias in the maximum likelihood estimator is

of the same order as its standard deviation. Consequently, both the Wald

and likelihood-ratio statistic are heavily size distorted. This is so for all the

significance levels and for all the sample sizes considered. The bias is clearly

seen to be O(n−1)+O(m−1). All the modified estimators have much less bias.

Moreover, the numerical results confirm our calculation that θ̃ is unbiased.

Further, the bias is consistently small relative to the standard deviation. As

a result, the performance of all test statistics improves dramatically relative

to maximum likelihood.

4.2. Factor model. Our second illustration is a stripped-down version of

the model in Bai [2009]. Here,

zij ∼ N(αiγj , θ).

This differs from the classic Neyman and Scott [1948] example in that, now,

the fixed effects enter in a multiplicative manner as opposed to additive.

This is a non-trivial complication. The model can be interpreted as a factor

model with heterogeneous factor loadings.
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Table 1
Simulation results for the Neyman-Scott problem

n = m = 10

θ̂ θ̌ θ̌∗ θ̃ θ̃∗
bias -0.189 -0.027 0.017 0.001 0.068
std. dev. 0.128 0.153 0.160 0.158 0.167
std. err. 0.115 0.138 0.148 0.142 0.174
ratio 0.897 0.897 0.925 0.897 1.039
Wald

0.01 0.281 0.049 0.030 0.037 0.009
0.05 0.431 0.107 0.072 0.086 0.041
0.10 0.524 0.166 0.128 0.143 0.086

LR
0.01 0.148 0.025 — 0.010 —
0.05 0.322 0.083 — 0.052 —
0.10 0.440 0.152 — 0.104 —

Bayes
0.01 — — 0.028 — 0.017
0.05 — — 0.084 — 0.063
0.10 — — 0.142 — 0.115

n = m = 20

θ̂ θ̌ θ̌∗ θ̃ θ̃∗
bias -0.098 -0.008 0.003 0.000 0.014
std. dev. 0.067 0.074 0.075 0.075 0.076
std. err. 0.064 0.070 0.071 0.071 0.075
ratio 0.947 0.947 0.942 0.947 0.990
Wald

0.01 0.202 0.021 0.021 0.018 0.013
0.05 0.372 0.072 0.071 0.066 0.055
0.10 0.473 0.126 0.125 0.119 0.103

LR
0.01 0.137 0.015 — 0.010 —
0.05 0.312 0.065 — 0.050 —
0.10 0.428 0.121 — 0.099 —

Bayes
0.01 — — 0.027 — 0.022
0.05 — — 0.076 — 0.063
0.10 — — 0.132 — 0.113
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The likelihood function is

`(θ, λ) = −nm
2

log θ −
∑n

i=1

∑m
j=1(zij − αiγj)2

2θ
.

The scale of the effects is not identified. One possible normalization is to set∑
i α

2
i =

∑
j γ

2
j , and we do so here.

The n+m score vector for the nuisance parameter λ has entries

∂`(θ, λ)

∂αi
=

m∑
j=1

(zij − αi γj) γj
θ

, i = 1, . . . , n,

∂`(θ, λ)

∂γj
=

n∑
i=1

(zij − αi γj)αi
θ

, j = 1, . . . ,m.

The estimator λ̂(θ) does not depend on θ and can be found by iterating on

the first-order conditions for α and γ. Given the estimators α̂i, γ̂j we find

the estimator of θ to be

θ̂ =
1

nm

n∑
i=1

m∑
j=1

(zij − α̂iγ̂j)2 =
1

nm

n∑
i=1

m∑
j=1

ε̂2
ij (say).

The plug-in estimator of the (n + m) × (n + m) covariance matrix of the

score for the incidental parameters is

Ω̂(θ) =
1

θ2

(
Ω̂αα Ω̂αγ
Ω̂γα Ω̂γγ

)
,

for n×n and m×m diagonal matrices Ω̂αα(θ) and Ω̂γγ(θ) whose entries are

(Ω̂αα)i,i′ =

{ ∑m
j=1 ε̂

2
ij γ̂

2
j if i = i′

0 if i 6= i′
, (Ω̂γγ)j,j′ =

{ ∑n
i=1 ε̂

2
ijα̂

2
i if j = j′

0 if j 6= j′
,

respectively, and n×m and m× n submatrices Ω̂αγ and Ω̂γα whose entries

are

(Ω̂αγ)i,j = (Ω̂γα)j,i = ε̂2
ij α̂iγ̂j .

The Hessian matrix is now estimated by

Σ̂(θ) =
1

θ

(
Σ̂αα Σ̂αγ
Σ̂γα Σ̂γγ

)
,
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where, with ŝ =
∑n

i=1 α̂
2
i =

∑m
j=1 γ̂

2
j , we have

Σαα = ŝ In, Σγγ = ŝ Im, (Σαγ)i,j = α̂iγ̂j − ε̂ij = (Σγα)j,i.

Combining these expressions lead to the bias estimator β̌(θ), which we omit

here for brevity. Note that here, again, the local correction term is very

simple and equals

β̃(θ) = −n+m

2
log θ,

up to a constant.

Table 2, which has the same layout as Table 1, provides numerical results

for the factor model. The conclusions are essentially the same as those drawn

in the previous subsection. Inference based on maximum likelihood performs

poorly. The modified likelihoods provide estimators with negligible bias and

test statistics with good size properties.

4.3. Binary-choice model. Our third example is a regression model for

a binary outcome yij . Here, zij = (yij , x
′
ij)
′ and we condition on xij ; so,

f(zij ; θ, αi, γj) = f(yij |xij ; θ, αi, γj) is the probability mass function of a

Bernoulli random variable. A logistic version has

P (yij = 1|xij , αi, γj) =
1

1 + e−(αi+γj+x′ijθ)
= µij(θ;αi, γj) (say).

The mean of the fixed effects is again not identified, and so we normalize

α1 = 0.

Let

εij(θ, αi, γj) = yij − µij(θ;αi, γj),

and write its maximum-likelihood estimator (which is not available in closed

form) as

ε̂ij(θ) = εij(θ, α̂i(θ), γ̂j(θ)).

Then

∂`(θ, λ)

∂αi−1
=
∑
j

εij(θ, αi, γj),
∂`(θ, λ)

∂γj
=
∑
i

εij(θ, αi, γj),

where i ranges over 2, . . . , n and j ranges over 1, . . . ,m. The components of

the matrix

Ω̂(θ) =

(
Ω̂αα(θ) Ω̂αγ(θ)

Ω̂γα(θ) Ω̂γγ(θ)

)
,
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Table 2
Simulation results for the Bai problem

n = m = 10

θ̂ θ̌ θ̌∗ θ̃ θ̃∗
bias -0.187 -0.020 0.033 0.017 0.086
std. dev. 0.127 0.157 0.165 0.159 0.169
std. err. 0.115 0.139 0.150 0.144 0.178
ratio 0.907 0.885 0.913 0.907 1.056
Wald

0.01 0.272 0.046 0.024 0.026 0.007
0.05 0.422 0.105 0.071 0.077 0.036
0.10 0.517 0.162 0.130 0.133 0.086

LR
0.01 0.139 0.024 — 0.011 —
0.05 0.311 0.087 — 0.048 —
0.10 0.430 0.149 — 0.100 —

Bayes
0.01 — — 0.030 — 0.019
0.05 — — 0.086 — 0.068
0.10 — — 0.145 — 0.120

n = m = 20

θ̂ θ̌ θ̌∗ θ̃ θ̃∗
bias -0.098 -0.006 0.007 0.003 0.017
std. dev. 0.067 0.074 0.075 0.074 0.076
std. err. 0.064 0.070 0.071 0.071 0.076
ratio 0.959 0.953 0.945 0.959 1.004
Wald

0.01 0.199 0.023 0.022 0.019 0.012
0.05 0.361 0.071 0.068 0.064 0.054
0.10 0.471 0.120 0.122 0.114 0.102

LR
0.01 0.131 0.015 — 0.010 —
0.05 0.303 0.067 — 0.053 —
0.10 0.426 0.119 — 0.100 —

Bayes
0.01 — — 0.029 — 0.022
0.05 — — 0.075 — 0.065
0.10 — — 0.128 — 0.114
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are of the form

(Ω̂αα(θ))i,i′ =

{ ∑m
j=1 ε̂

2
(i+1)j(θ) if i = i′

0 if i 6= i′
,

(Ω̂γγ(θ))j,j′ =

{ ∑n
i=1 ε̂

2
ij(θ) if j = j′

0 if j 6= j′
,

and

(Ω̂αγ(θ))i,j = (Ω̂γα(θ))j,i = ε̂2
(i+1)j(θ).

To state the plug-in estimator of the information matrix, let

σij(θ, αi, γi) = µij(θ, αi, γi)
(
1− µij(θ, αi, γi)

)
,

which is the logistic density function at observation zij for given parameter

values, and let σ̂ij(θ) = σij(θ, α̂i(θ), γ̂i(θ)). Then

Σ̂(θ) =

(
Σ̂αα(θ) Σ̂αγ(θ)

Σ̂γα(θ) Σ̂γγ(θ)

)
,

where

[Σ̂αα(θ)]i,i′ =

{ ∑m
j=1 σ̂(i+1)j(θ) if i = i′

0 if i 6= i′

and

[Σ̂γγ(θ)]j,j′ =

{ ∑n
i=1 σ̂ij(θ) if j = j′

0 if j 6= j′

are (n − 1) × (n − 1) and m × m diagonal matrices of order m and n,

respectively, and the (n−1)×m submatrices Σ̂αγ(θ) and Σ̂γα(θ) have entries

(Σ̂αγ(θ))i,j = (Σ̂γα(θ))j,i = σ̂(i+1)j(θ),

each of which is of order one.

Simulation results for a design where θ = 1, xij is univariate logistic,

and all fixed effects are set to zero are reported in Table 3. We provide

results, based on 1, 000 replications, for samples of size n = m = 20 and

n = m = 40. For the estimators θ̂, θ̌, and θ̃, the standard error is estimated

as the inverse of the empirical information. Experimentation with the outer

product of the score vector gave very similar results. Inference based on the

quasi-Bayesian estimators does not require an expression for the asymptotic

variance but does require sampling from the posterior density. Here (for
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Table 3
Simulation results for the Holland and Leinhardt problem

n = m = 20

θ̂ θ̌ θ̌∗ θ̃ θ̃∗ θ̂BC θ̂CL

bias 0.151 0.031 0.014 0.046 0.029 0.013 0.024
std. dev. 0.142 0.123 0.118 0.126 0.120 0.122 0.137
std. err. 0.129 0.118 0.107 0.119 0.111 0.133 0.155
ratio 0.903 0.953 0.906 0.945 0.920 1.093 1.132
Wald

0.01 0.057 0.009 0.023 0.012 0.013 0.005 0.003
0.05 0.188 0.060 0.080 0.062 0.080 0.029 0.026
0.10 0.300 0.113 0.134 0.123 0.132 0.069 0.055

LR
0.01 0.085 0.020 — 0.025 — — —
0.05 0.228 0.077 — 0.079 — — —
0.10 0.333 0.138 — 0.154 — — —

Bayes
0.01 — — 0.037 — 0.036 — —
0.05 — — 0.085 — 0.091 — —
0.10 — — 0.137 — 0.137 — —

n = m = 40

θ̂ θ̌ θ̌∗ θ̃ θ̃∗ θ̂BC θ̂CL

bias 0.065 0.006 0.003 0.010 0.007 0.001 0.003
std. dev. 0.062 0.058 0.058 0.058 0.059 0.058 0.061
std. err. 0.058 0.056 0.055 0.056 0.055 0.059 0.065
ratio 0.938 0.969 0.957 0.967 0.938 1.022 1.058
Wald

0.01 0.071 0.013 0.022 0.014 0.032 0.012 0.110
0.05 0.192 0.052 0.078 0.053 0.084 0.044 0.042
0.10 0.282 0.109 0.132 0.108 0.149 0.094 0.082

LR
0.01 0.080 0.016 — 0.015 — — —
0.05 0.210 0.061 — 0.061 — — —
0.10 0.299 0.120 — 0.114 — — —

Bayes
0.01 — — 0.056 — 0.061 — —
0.05 — — 0.095 — 0.100 — —
0.10 — — 0.150 — 0.152 — —
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feasibility of the simulations) we use a short burn-in period for the Markov

chain and draw few realizations from it. In practice, larger numbers should

be drawn, and stationarity of the chain should be checked. Here, again, the

bias in θ̂ is clearly visible and the associated test statistics substantially

overreject. Basing inference on the modified likelihood largely removes the

bias and takes care of the overrejection problem in the test statistics. The

last two columns of Table 3 provide results for two other estimators. The

first is the analytically bias-corrected estimator (which, here, differs from the

maximizer of the modified likelihood), θ̂BC (see Fernández-Val and Weidner

2016). The second estimator is based on differencing-out the fixed effects

(which is possible here via a sufficiency argument), θ̂CL (Jochmans 2017a).

Both these estimators do well in terms of bias. Confidence intervals for θ

based on their asymptotic distribution tend to be a bit too wide in small

samples which implies the Wald statistic can be conservative.

The argument here does not depend on the logistic distribution. Other

link functions, such as a probit or a log-log are equally admissible. Indeed,

more generally, generic nonlinear regression models are amenable to our

approach.
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